
Introduction to numerical projects

Here follows a brief recipe and recommendation on how to write a report for each project.

• Give a short description of the nature of the problem and the eventual numerical methods
you have used.

• Describe the algorithm you have used and/or developed. Here you may find it convenient
to use pseudocoding. In many cases you can describe the algorithm in the program itself.

• Include the source code of your program. Comment your program properly.

• If possible, try to find analytic solutions, or known limits in order to test your program
when developing the code.

• Include your results either in figure form or in a table. Remember to label your results.
All tables and figures should have relevant captions and labels on the axes.

• Try to evaluate the reliabilty and numerical stability/precision of your results. If pos-
sible, include a qualitative and/or quantitative discussion of the numerical stability,
eventual loss of precision etc.

• Try to give an interpretation of you results in your answers to the problems.

• Critique: if possible include your comments and reflections about the exercise, whether
you felt you learnt something, ideas for improvements and other thoughts you’ve made
when solving the exercise. We wish to keep this course at the interactive level and your
comments can help us improve it.

• Try to establish a practice where you log your work at the computerlab. You may
find such a logbook very handy at later stages in your work, especially when you don’t
properly remember what a previous test version of your program did. Here you could
also record the time spent on solving the exercise, various algorithms you may have
tested or other topics which you feel worthy of mentioning.

Format for electronic delivery of report and programs

The preferred format for the report is a PDF file. You can also use DOC or postscript formats.
As programming language we prefer that you choose between C/C++, Fortran2008 or Python.
The following prescription should be followed when preparing the report:

• Use Devilry to hand in your projects, log in at http://devilry.ifi.uio.no with your
normal UiO username and password and choose either ’fys3150’ or ’fys4150’. There you
can load up the files within the deadline.

• Upload only the report file! For the source code file(s) you have developed please
provide us with your link to your github domain. The report file should include all of
your discussions and a list of the codes you have developed. Do not include library files
which are available at the course homepage, unless you have made specific changes to
them.
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• Comments from us on your projects, approval or not, corrections to be made etc can
be found under your Devilry domain and are only visible to you and the teachers of the
course.

Finally, we encourage you to work two and two together. Optimal working groups consist
of 2-3 students. You can then hand in a common report.

Project 1, deadline Monday 16 September 12pm (noon)

The aim of this project is to get familiar with various matrix operations, from dynamic memory
allocation to the usage of programs in the library package of the course. For Fortran users
memory handling and most matrix and vector operations are included in the ANSI standard
of Fortran 90/95. Array handling in Python is also rather trivial. For C++ user however,
there are three possible options

1. Make your own functions for dynamic memory allocation of a vector and a matrix. Use
then the library package lib.cpp with its header file lib.hpp for obtaining LU-decomposed
matrices, solve linear equations etc.

2. Use the library package lib.cpp with its header file lib.hpp which includes a function
matrix for dynamic memory allocation. This program package includes all the other
functions discussed during the lectures for solving systems of linear equations, obtaining
the determinant, getting the inverse etc.

3. We would recommend strongly that you use the C++ library Armadillo, to be found at
arma.sourceforge.net. We will discuss the usage of this library during the lectures of
week 36 and 37.

Your program, whether it is written in C++, Python or Fortran2008, should include
dynamic memory handling of matrices and vectors.

The material needed for this project is covered by chapter 6 of the lecture notes, in par-
ticular section 6.4 and subsequent sections.

Many important differential equations in the Sciences can be written as linear second-order
differential equations

d2y

dx2
+ k2(x)y = f(x),

where f is normally called the inhomogeneous term and k2 is a real function.
A classical equation from electromagnetism is Poisson’s equation. The electrostatic poten-

tial Φ is generated by a localized charge distribution ρ(r). In three dimensions it reads

∇2Φ = −4πρ(r).

With a spherically symmetric Φ and ρ(r) the equations simplifies to a one-dimensional equation
in r, namely

1

r2
d

dr

(
r2
dΦ

dr

)
= −4πρ(r),

which can be rewritten via a substitution Φ(r) = φ(r)/r as

d2φ

dr2
= −4πρ(r).
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The inhomogeneous term f or source term is given by the charge distribution ρ
We will rewrite this equation by letting φ → u and r → x. The general one-dimensional

Poisson equation reads then
−u′′(x) = f(x).

(a) In this project we will solve the one-dimensional Poissson equation with Dirichlet bound-
ary conditions by rewriting it as a set of linear equations.

To be more explicit we will solve the equation

−u′′(x) = f(x), x ∈ (0, 1), u(0) = u(1) = 0.

and we define the discretized approximation to u as vi with grid points xi = ih in the
interval from x0 = 0 to xn+1 = 1. The step length or spacing is defined as h = 1/(n+1).
We have then the boundary conditions v0 = vn+1 = 0. We approximate the second
derivative of u with

−vi+1 + vi−1 − 2vi
h2

= fi for i = 1, . . . , n,

where fi = f(xi). Show that you can rewrite this equation as a linear set of equations
of the form

Av = b̃,

where A is an n× n tridiagonal matrix which we rewrite as

A =



2 −1 0 . . . . . . 0
−1 2 −1 0 . . . . . .
0 −1 2 −1 0 . . .

. . . . . . . . . . . . . . .
0 . . . −1 2 −1
0 . . . 0 −1 2

 (1)

and b̃i = h2fi.

In our case we will assume that the source term is f(x) = 100e−10x, and keep the same
interval and boundary conditions. Then the above differential equation has an analytic
solution given by u(x) = 1−(1−e−10)x−e−10x (convince yourself that this is correct by
inserting the solution in the Poisson equation). We will compare our numerical solution
with this analytic result in the next exercise.

(b) We can rewrite our matrix A in terms of one-dimensional vectors a, b, c of length 1 : n.
Our linear equation reads

A =



b1 c1 0 . . . . . . . . .
a2 b2 c2 . . . . . . . . .

a3 b3 c3 . . . . . .
. . . . . . . . . . . . . . .

an−2 bn−1 cn−1
an bn





v1
v2
. . .
. . .
. . .
vn

 =



b̃1
b̃2
. . .
. . .
. . .

b̃n

 . (2)
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A tridiagonal matrix is a special form of banded matrix where all the elements are zero
except for those on and immediately above and below the leading diagonal. The above
tridiagonal system can be written as

aivi−1 + bivi + civi+1 = b̃i, (3)

for i = 1, 2, . . . , n. The algorithm for solving this set of equations is rather simple and
requires two steps only, a decomposition and forward substitution and finally a backward
substitution.

Your first task is to set up the algorithm for solving this set of linear equations. Find
also the precise number of floating point operations needed to solve the above equations.
Compare this with standard Gaussian elimination and LU decomposition.

Then you should code the above algorithm and solve the problem for matrices of the
size 10× 10, 100× 100 and 1000× 1000. That means that you choose n = 10, n = 100
and n = 1000 grid points.

Compare your results (make plots) with the analytic results for the different number of
grid points in the interval x ∈ (0, 1). The different number of grid points corresponds to
different step lengths h.

(c) Compute the relative error in the data set i = 1, . . . , n,by setting up

εi = log10

(∣∣∣∣vi − uiui

∣∣∣∣) ,
as function of log10(h) for the function values ui and vi. For each step length extract
the max value of the relative error. Try to increase n to n = 10000 and n = 105. Make
a table of the results and comment your results.

(d) Compare your results with those from the LU decomposition codes for the matrix of
sizes 10 × 10, 100 × 100 and 1000 × 1000. Here you should use the library functions
provided on the webpage of the course. Use for example the unix function time when
you run your codes and compare the time usage between LU decomposition and your
tridiagonal solver. Alternatively, you can use the functions in C++, Fortran or Python
that measure the time used.

Make a table of the results and comment the differences in execution time How many
floating point operations does the LU decomposition use to solve the set of linear equa-
tions? Can you run the standard LU decomposition for a matrix of the size 105 × 105?
Comment your results.

To compute the elapsed time in c++ you can use the following statements

Time in C++
using namespace std ;
. . .

#include "time.h" // you have to inc l ude the time . h header
int main ( )
{

// d e c l a r a t i on s o f v a r i a b l e s
. . .
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clock_t s ta r t , f i n i s h ; // dec l a r e s t a r t and f i n a l time
s t a r t = c l o ck ( ) ;
// your code i s here , do something and then ge t f i n a l time
f i n i s h = c lock ( ) ;
( ( f i n i s h − s t a r t ) /CLOCKS_PER_SEC ) ;

. . .

Similarly, in Fortran, this simple example shows how to compute the elapsed time.

Time in Fortran
PROGRAM time
REAL : : et ime ! Dec lare the type o f et ime ()
REAL : : e l apsed (2 ) ! For r e c e i v i n g user and system time
REAL : : t o t a l ! For r e c e i v i n g t o t a l time
INTEGER : : i , j

WRITE(∗ ,∗ ) ’Start’

DO i = 1 , 5000000
j = j + 1

ENDDO

t o t a l = ETIME( e lapsed )
WRITE(∗ ,∗ ) ’End: total=’ , t o ta l , ’ user=’ , e l apsed (1 ) , &

’ system=’ , e l apsed (2 )

ENDPROGRAM time

(e) The aim here is to test possible memory strides when performing operations on matrices.
To be more specific, we will look at the problem of matrix matrix multiplications. In
C++ matrix elements are ordered in a row-major way while in Fortran they are ordered
in a column-major order. The task here is to write a small program which sets up two
random (use the ran0 function in the library lib.cpp to initialize the matrix) double
precision valued matrices of dimension 104 × 104.

The multiplication of two matrices A = BC could then take the following form in
standard row-major order

for ( i=0 ; i < n ; i++) {
for ( j=0 ; j < n ; j++) {

for ( k=0 ; k < n ; k++) {
a [ i ] [ j ]+=b [ i ] [ k ]∗ c [ k ] [ j ]

}
}

}

and in a column-major order as

for ( j=0 ; j < n ; j++) {
for ( i=0 ; i < n ; i++) {

for ( k=0 ; k < n ; k++) {
a [ i ] [ j ]+=b [ i ] [ k ]∗ c [ k ] [ j ]
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}
}

}

After you have initialized the matrices B and C compute the matrix A using the above
algorithms. Compute the time needed for the matrix multiplications (do not include the
time needed for the set up of the matrices and their initializations). You can also use the
functions in BLAS to compute the matrix-matrix multiplications. To do that, test the
speed using ArmadilloÂťs functionality (using BLAS) for matrix-matrix multiplications.
If you have time, you could compare your C++ program with matrix multiplication in
Python. Comment your results.

Good luck.
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